Evaluation of artificial neural network techniques for flow forecasting in the River Yangtze, China

نویسندگان

  • C. W. Dawson
  • C. Harpham
  • Y. Chen
چکیده

While engineers have been quantifying rainfall-runoff processes since the mid-19th century, it is only in the last decade that artificial neural network models have been applied to the same task. This paper evaluates two neural networks in this context: the popular multilayer perceptron (MLP), and the radial basis function network (RBF). Using six-hourly rainfall-runoff data for the River Yangtze at Yichang (upstream of the Three Gorges Dam) for the period 1991 to 1993, it is shown that both neural network types can simulate river flows beyond the range of the training set. In addition, an evaluation of alternative RBF transfer functions demonstrates that the popular Gaussian function, often used in RBF networks, is not necessarily the ‘best’ function to use for river flow forecasting. Comparisons are also made between these neural networks and conventional statistical techniques; stepwise multiple linear regression, auto regressive moving average models and a zero order forecasting approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting of Covid-19 cases based on prediction using artificial neural network curve fitting technique

Artificial neural network is considered one of the most efficient methods in processing huge data sets that can be analyzed computationally to reveal patterns, trends, prediction, forecasting etc. It has a great prospective in engineering as well as in medical applications. The present work employs artificial neural network-based curve fitting techniques in prediction and forecasting of the Cov...

متن کامل

"Technical Report" Performance Comparison of IHACRES Model and Artificial Neural Network to Predict the Flow of Sivand River

The accurate determination of river flow in watersheds without sufficient data is one of the major challenges in hydrology. In this regard, given the diversity of existing hydrological models, selection of an appropriate model requires evaluation of the performance of the hydrological models in each region. The objective of this study was to compare the performance of artificial neural network ...

متن کامل

Daily river flow forecasting in a semi-arid region using twodatadriven

Rainfall-runoff relationship is very important in many fields of hydrology such as water supply and water resourcemanagement and there are many models in this field. Among these models, the Artificial Neural Network (ANN) wasfound suitable for processing rainfall-runoff and opened various approaches in hydrological modeling. In addition,ANNs are quick and flexible approaches which provide very ...

متن کامل

Evaluation of the Neuro-Fuzzy and Hybrid Wavelet-Neural Models Efficiency in River Flow Forecasting (Case Study: Mohmmad Abad Watershed)

  One of the most important issues in watersheds management is rainfall-runoff hydrological process forecasting. Using new models in this field can contribute to proper management and planning. In addition, river flow forecasting, especially in flood conditions, will allow authorities to reduce the risk of flood damage. Considering the importance of river flow forecasting in water resources ma...

متن کامل

Comparison of several flood forecasting models in Yangtze River

Abstract In a flood-prone region, quick and accurate flood forecasting is imperative. It can extend the lead time for issuing disaster warnings and allow sufficient time for habitants in hazardous areas to take appropriate action, such as evacuation. In this paper, two hybrid models based on recent artificial intelligence technology, namely, genetic algorithm-based artificial neural network (AN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002